Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.247
Filtrar
1.
Front Immunol ; 15: 1384270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576620

RESUMO

With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Transtornos Mentais , Microbiota , Humanos , Encéfalo/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/metabolismo , Transtornos Mentais/metabolismo
2.
Front Immunol ; 15: 1385907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605960

RESUMO

The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.


Assuntos
Doenças Inflamatórias Intestinais , Microbiota , Humanos , Mucosa Intestinal , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Hipóxia/metabolismo
3.
Med Arch ; 78(2): 105-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566874

RESUMO

Background: The early establishment of prophylaxis and immediate administration of anticoagulant therapy upon the diagnosis of venous thromboembolism should be the treatment objectives in these patients. Objective: The study aimed to determine the optimal cut-off point of Calprotectin, IL-6 (interleukin-6), CRP (C reactive protein) to differentiate UC, IBS-D. Methods: A cross-sectional descriptive study of 335 individuals ≥15 years old was performed, including 31 healthy controls, 215 with IBS-D, 71 diagnosed with UC, and 18 diagnosed with CD. Receiver Operating Characteristics (ROC), sensitivity, specificity, and area under curve (AUC) were computed. Results: The results showed that the median value of calprotectin (IQR) in healthy participants was 20.0 (6.0 - 34.0) µg/g; 17,7 (8,7-38,9) µg/g in IBS-D group; 1710.0 (588 - 4260,0) µg/g in UC group; and 560.5 (177.8 - 1210.0) µg/g in CD group. Calprotectin concentration in IBD group including UC and CD was higher than IBS-D with p<0.05. The median value of CRP (range IQR) was 1,3 (0,9 - 2,3) mg/L in IBS-D group; 7.0 (2.4 -16.6) mg/L in UC group; and 10.1 (2.2 - 42.5) mg/L in CD group. CRP concentration in IBD group including UC and CD was higher than IBS-D with p<0.05. The median value of IL-6 (range IQR) was 2.3 (1.6 - 5.7) pg/mL in IBS-D group; 16.8 (9.4 - 47.0) pg/mL in UC group; and 9.4 (7.9 - 11.0) pg/mL in CD group. Calprotectin concentration in IBD group including UC and CD was higher than IBS-D with p<0.05. The optimal cut-off point of calprotectin that differentiated IBS-D from IBD was 110.5 µg/g, with sensitivity and specificity of 93.3% and 91.4%, respectively; of IL-6 was 7.2 pg/mL with sensitivity and specificity of 92.0% and 78.0%, respectively; of CRP of 2.4 mg/L had specific sensitivities of 83.3% and 86.0%, respectively. Conclusion: The Calprotectin immunoassay has the best value in discriminating between IBD and IBS-D.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Adolescente , Humanos , Biomarcadores/metabolismo , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Estudos Transversais , Diarreia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-6/metabolismo , Síndrome do Intestino Irritável/diagnóstico , Complexo Antígeno L1 Leucocitário/metabolismo
4.
Sci Adv ; 10(14): eadj7666, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569041

RESUMO

Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.


Assuntos
Doenças Inflamatórias Intestinais , Prostaglandinas , Humanos , Epitélio/metabolismo , Inflamação , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Fibroblastos/metabolismo
5.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542140

RESUMO

Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, including inflammatory bowel disease. Although previously published data suggested that the modulation of MMP12 in macrophages could be a determinant for the development of intestinal inflammation, scarce information is available on the mechanisms underlying the regulation of MMP12 expression in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with inflammatory bowel disease and the molecular events leading to the transcriptional control of this metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of MMP12 in macrophages and its relationship with inflammation.


Assuntos
Doenças Inflamatórias Intestinais , Metaloproteinase 12 da Matriz , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Redes e Vias Metabólicas , RNA/metabolismo , Animais , Camundongos
6.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542367

RESUMO

Inflammatory bowel disease (IBD) is one of the most prevalent chronic inflammations of the gastrointestinal tract (GIT). The gut microbial population, the cytokine milieu, the aryl hydrocarbon receptor (AHR) expressed by immune and nonimmune cells and the intrinsic pathway of Th-cell differentiation are implicated in the immunopathology of IBD. AHR activation requires a delicate balance between regulatory and effector T-cells; loss of this balance can cause local gut microbial dysbiosis and intestinal inflammation. Thus, the study of the gut microbiome in association with AHR provides critical insights into IBD pathogenesis and interventions. This review will focus on the recent advancements to form conceptional frameworks on the benefits of AHR activation by commensal gut bacteria in IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Microbioma Gastrointestinal/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/complicações , Anti-Inflamatórios , Disbiose/complicações
7.
J Med Chem ; 67(7): 5642-5661, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38547240

RESUMO

Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound. Compound 33 exhibited a potent FXR agonistic activity, high intestinal distribution, good anti-inflammatory activity, and the ability to repair the colon epithelium in a DSS-induced acute enteritis model. Based on the results of RNA-seq analysis, we further investigated the therapeutic potential of the combination of compound 33 with 5-ASA. Overall, the results indicated that compound 33 is a promising drug candidate for IBD treatment.


Assuntos
Doenças Inflamatórias Intestinais , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Colo , Mucosa Intestinal/metabolismo
8.
J Agric Food Chem ; 72(14): 7882-7893, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530797

RESUMO

IL-1ß is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1ß-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1ß-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1ß and IL-1R by directly binding to IL-1ß and inhibited the IL-1ß activity. It suppressed IL-1ß-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1ß-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1ß activity and anticolitis effect by hindering the IL-1ß and IL-1R interaction and may be a promising therapeutic anti-IL-1ß agent for IBD treatment.


Assuntos
Colite , Glucosídeos , Taninos Hidrolisáveis , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Células CACO-2 , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo
9.
Mucosal Immunol ; 17(2): 303-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428738

RESUMO

The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.


Assuntos
Doenças Inflamatórias Intestinais , Microbiota , Animais , Humanos , Intestinos , Doenças Inflamatórias Intestinais/metabolismo , Sistema Imunitário , Mucosa Intestinal , Mamíferos
10.
Sci Rep ; 14(1): 5908, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467701

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition that is influenced by various factors, including environmental factors, immune responses, and genetic elements. Among the factors that influence IBD progression, macrophages play a significant role in generating inflammatory mediators, and an increase in the number of activated macrophages contributes to cellular damage, thereby exacerbating the overall inflammatory conditions. HSPA9, a member of the heat shock protein 70 family, plays a crucial role in regulating mitochondrial processes and responding to oxidative stress. HSPA9 deficiency disrupts mitochondrial dynamics, increasing mitochondrial fission and the production of reactive oxygen species. Based on the known functions of HSPA9, we considered the possibility that HSPA9 reduction may contribute to the exacerbation of colitis and investigated its relevance. In a dextran sodium sulfate-induced colitis mouse model, the downregulated HSPA9 exacerbates colitis symptoms, including increased immune cell infiltration, elevated proinflammatory cytokines, decreased tight junctions, and altered macrophage polarization. Moreover, along with the increased mitochondrial fission, we found that the reduction in HSPA9 significantly affected the superoxide dismutase 1 levels and contributed to cellular death. These findings enhance our understanding of the intricate mechanisms underlying colitis and contribute to the development of novel therapeutic approaches for this challenging condition.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Morte Celular , Colite/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo
11.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473746

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the digestive tract and is closely associated with the homeostasis of the gut microbiota. Inulin, as a natural prebiotic, displays anti-inflammatory activity and maintains equilibrium of the intestinal microbiota. In this study, our research aimed to explore the potential of inulin in enhancing intestinal immunity and reducing inflammation in stress-recurrent IBD. In this study, a co-culture intestinal epithelium model and a stress-recurrent IBD mouse model was used to examine the protective effects of inulin. It was observed that inulin digesta significantly reduced pro-inflammatory cytokine expression (CXCL8/IL8 and TNFA) and increased MUC2 expression in intestinal epithelial cells. In vivo, our findings showed that Inulin intake significantly prevented IBD symptoms. This was substantiated by a decrease in serum inflammatory markers (IL-6, CALP) and a downregulation of inflammatory cytokine (Il6) in colon samples. Additionally, inulin intake led to an increase in short-chain fatty acids (SCFAs) in cecal contents and a reduction in the expression of endoplasmic reticulum (ER) stress markers (CHOP, BiP). Our results highlight that inulin can improve stress-recurrent IBD symptoms by modulating microbiota composition, reducing inflammation, and alleviating ER stress. These findings suggested the therapeutic potential of inulin as a dietary intervention for ameliorating stress-recurrent IBD.


Assuntos
Doenças Inflamatórias Intestinais , Inulina , Camundongos , Animais , Inulina/farmacologia , Colo/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
12.
Cell Commun Signal ; 22(1): 176, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475799

RESUMO

BACKGROUND: The impact of antidepressants on Inflammatory bowel diseases (IBD) has been extensively studied. However, the biological effects and molecular mechanisms of antidepressants in alleviating colitis remain unclear. METHODS: We systematically assessed how antidepressants (fluoxetine, fluvoxamine and venlafaxine) affected IBD and chose fluoxetine, the most effective one, for mechanism studies. We treated the C56BL/6 mice of the IBD model with fluoxetine and their controls. We initially assessed the severity of intestinal inflammation in mice by body weight loss, disease Activity Index scores and the length of the colon. The H&E staining and immunohistochemical staining of MUC2 of colon sections were performed to observe the pathological changes. RT-qPCR and western blot were conducted to assess the expression level of the barrier and inflammation-associated genes. Then, single-cell RNA sequencing was performed on mouse intestinal mucosa. Seurat was used to visualize the data. Uniform Manifold Approximation and Projection (UMAP) was used to perform the dimensionality reduction. Cell Chat package was used to perform cell-cell communication analysis. Monocle was used to conduct developmental pseudotime analysis. Last, RT-qPCR, western blot and immunofluorescence staining were conducted to test the phenomenon discovered by single-cell RNA sequencing in vitro. RESULTS: We found that fluoxetine treatment significantly alleviated colon inflammation. Notably, single-cell RNA sequencing analysis revealed that fluoxetine affected the distribution of different cell clusters, cell-cell communication and KEGG pathway enrichment. Under the treatment of fluoxetine, enterocytes, Goblet cells and stem cells became the dominating cells. The pseudotime analysis showed that there was a trend for M1 macrophages to differentiate into M2 macrophages. Lastly, we tested this phenomenon in vitro, which exhibited anti-inflammatory effects on enterocytes. CONCLUSIONS: Fluoxetine exhibited anti-inflammatory effects on intestinal mucosa via remodeling of the intestinal cells and macrophages, which reveals that fluoxetine is a promising therapeutic drug for the treatment of IBD and psychiatric comorbidities.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL
13.
Sci Rep ; 14(1): 6335, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491049

RESUMO

Inflammatory bowel disease (IBD) pathogenesis involves complex inflammatory events and cell death. Although IBD involves mainly necrosis in the digestive tract, pyroptosis has also been recognized. Nonetheless, the underlying basis is elusive. Gα12/13 overexpression may affect endoplasmic reticulum (ER) stress. This study examined how Gα12/13 and ER stress affect pyroptosis using dextran sulfate sodium (DSS)-induced colitis models. Gα12/13 levels were increased in the distal and proximal colons of mice exposed to a single cycle of DSS, as accompanied by increases of IRE1α, ATF6, and p-PERK. Moreover, Il-6, Il-1ß, Ym1, and Arg1 mRNA levels were increased with caspase-1 and IL-1ß activation, supportive of pyroptosis. In the distal colon, RIPK1/3 levels were enhanced to a greater degree, confirming necroptosis. By contrast, the mice subjected to three cycles of DSS treatments showed decreases of Gα12/13, as accompanied by IRE1α and ATF6 suppression, but increases of RIPK1/3 and c-Cas3. AZ2 treatment, which inhibited Gα12, has an anti-pyroptotic effect against a single cycle of colitis. These results show that a single cycle of DSS-induced colitis may cause ER stress-induced pyroptosis as mediated by Gα12 overexpression in addition to necroptosis, but three cycles model induces only necroptosis, and that AZ2 may have an anti-pyroptotic effect.


Assuntos
Colite , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Animais , Camundongos , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piroptose
14.
PLoS One ; 19(3): e0300892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512959

RESUMO

Inflammatory bowel diseases (IBD) result from uncontrolled inflammation in the intestinal mucosa leading to damage and loss of function. Both innate and adaptive immunity contribute to the inflammation of IBD and innate and adaptive immune cells reciprocally activate each other in a forward feedback loop. In order to better understand innate immune contributions to IBD, we developed a model of spontaneous 100% penetrant, early onset colitis that occurs in the absence of adaptive immunity by crossing villin-TNFAIP3 mice to RAG1-/- mice (TRAG mice). This model is driven by microbes and features increased levels of innate lymphoid cells in the intestinal mucosa. To investigate the role of type 3 innate lymphoid cells (ILC3) in the innate colitis of TRAG mice, we crossed them to retinoid orphan receptor gamma t deficient (Rorγt-/-) mice. Rorγt-/- x TRAG mice exhibited markedly reduced eosinophilia in the colonic mucosa, but colitis persisted in these mice. Colitis in Rorγt-/- x TRAG mice was characterized by increased infiltration of the intestinal mucosa by neutrophils, inflammatory monocytes, macrophages and other innate cells. RNA and cellular profiles of Rorγt-/- x TRAG mice were consistent with a lack of ILC3 and ILC3 derived cytokines, reduced antimicrobial factors, increased activation oof epithelial repair processes and reduced activation of epithelial cell STAT3. The colitis in Rorγt-/- x TRAG mice was ameliorated by antibiotic treatment indicating that microbes contribute to the ILC3-independent colitis of these mice. Together, these gene expression and cell signaling signatures reflect the double-edged sword of ILC3 in the intestine, inducing both proinflammatory and antimicrobial protective responses. Thus, Rorγt promotes eosinophilia but Rorγt and Rorγt-dependent ILC3 are dispensable for the innate colitis in TRAG mice.


Assuntos
Anti-Infecciosos , Colite , Eosinofilia , Doenças Inflamatórias Intestinais , Camundongos , Animais , Imunidade Inata , Linfócitos/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Eosinofilia/metabolismo , Anti-Infecciosos/metabolismo , Retinoides , Camundongos Endogâmicos C57BL
15.
FASEB J ; 38(6): e23551, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38489235

RESUMO

Inflammation is a significant pathological manifestation of inflammatory bowel disease (IBD), yet its mechanism has remained unclear. Although WNT2B is enriched in the intestinal inflammatory tissue of IBD patients, the specific mechanism of WNT2B in the formation of intestinal inflammation remains unclear. This study was aimed to investigate whether macrophages expressing WNT2B can aggravate intestinal tissue inflammation. Samples were collected from both normal individuals and patients with IBD at multiple colon sites. Macrophages were identified using tissue immunofluorescence. IκB kinase (IKK)-interacting protein (IKIP), which interacts with WNT2B, was found by protein cross-linking and protein mass spectrometry. The expression of WNT2B, IKIP, the NF-κB pathway, and downstream molecules were analyzed. An acute colitis model of C57BL/6J mice was established using an adeno-associated virus (AAV)-mediated WNT2B knockdown system and 3% dextran sulfate sodium (DSS). The degree of intestinal inflammation in mice was assessed upon WNT2B knockdown in macrophages. Macrophages expressing WNT2B were found to be enriched in the colitis tissues of IBD patients. WNT2B in macrophages activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines. By competitively binding IKIP, WNT2B reduced the binding of IKIP to IKKß and promoted the activation of the NF-κB pathway. Using an AAV-mediated WNT2B knockdown system, WNT2B expression in intestinal macrophages was suppressed, leading to a reduction in intestinal inflammation. WNT2B activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines by competitively binding to IKIP, potentially contributing to colon inflammatory injury in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Doenças Inflamatórias Intestinais/metabolismo , Colite/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Sulfato de Dextrana , Glicoproteínas/metabolismo , Proteínas Wnt/metabolismo
16.
Mol Syst Biol ; 20(4): 338-361, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467837

RESUMO

Microbial biochemistry is central to the pathophysiology of inflammatory bowel diseases (IBD). Improved knowledge of microbial metabolites and their immunomodulatory roles is thus necessary for diagnosis and management. Here, we systematically analyzed the chemical, ecological, and epidemiological properties of ~82k metabolic features in 546 Integrative Human Microbiome Project (iHMP/HMP2) metabolomes, using a newly developed methodology for bioactive compound prioritization from microbial communities. This suggested >1000 metabolic features as potentially bioactive in IBD and associated ~43% of prevalent, unannotated features with at least one well-characterized metabolite, thereby providing initial information for further characterization of a significant portion of the fecal metabolome. Prioritized features included known IBD-linked chemical families such as bile acids and short-chain fatty acids, and less-explored bilirubin, polyamine, and vitamin derivatives, and other microbial products. One of these, nicotinamide riboside, reduced colitis scores in DSS-treated mice. The method, MACARRoN, is generalizable with the potential to improve microbial community characterization and provide therapeutic candidates.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Metaboloma , Ácidos e Sais Biliares
17.
Acta Biomater ; 177: 347-360, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38373525

RESUMO

Colon mucosal overexpression of reactive oxygen and nitrogen species (RONS) accelerates the development of inflammatory bowel disease (IBD) and destroys the mucosa and its barrier. IBD can be alleviated by removing RONS from the inflamed colon. The preparation of strong and efficient nanoantioxidants remains a challenge despite the development of numerous nanoantioxidants. In this paper, Zn-TA nanoparticles with fine hollow microstructure (HZn-TA) were successfully prepared and could be effectively used to treat IBD. In the first step, ZIF-8 nanoparticles were synthesized by a one-pot method. On this basis, HZn-TA nanoparticles were etched by TA, and a multifunctional nanase was developed for the treatment of IBD. RONS, including reactive oxygen species (ROS) and nitric oxide (NO), can be eliminated to increase cell survival following Hydrogen peroxide (H2O2) stimulation, including reactive oxygen species (ROS) and nitric oxide (NO with hydrogen peroxide (H2O2). In a model for preventing and delaying acute colitis, clearance of RONS has been shown to reduce intestinal inflammation in mice by reducing colon damage, proinflammatory cytokine levels, the spleen index, and body weight. Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate zonula occludens protein 1 (ZO-1) and claudin-1 expression. Based on the results of this study, HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS. Therefore, we pioneered the application of HZn-TA nanoparticles for the treatment of IBD, which are capable of clearing RONS without significant adverse effects. STATEMENT OF SIGNIFICANCE: ➢ HZn-TA nanoparticles were successfully prepared and could be effectively used to treat IBD. ➢ Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate ZO-1 and claudin-1 expression. ➢ HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS.


Assuntos
Peróxido de Hidrogênio , Doenças Inflamatórias Intestinais , Polifenóis , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Zinco/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Óxido Nítrico/metabolismo , Claudina-1/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo
18.
Nat Commun ; 15(1): 1673, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396052

RESUMO

The PD-1/PD-L1 pathway in mucosal immunity is currently actively explored and considered as a target for inflammatory bowel disease (IBD) treatment. However, systemic PD-L1 administration may cause unpredictable adverse effects due to immunosuppression. Here we show that reactive oxygen species (ROS)-responsive nanoparticles enhance the efficacy and safety of PD-L1 in a mouse colitis model. The nanoparticles control the accumulation and release of PD-L1 fused to Fc (PD-L1-Fc) at inflammatory sites in the colon. The nanotherapeutics shows superiority in alleviating inflammatory symptoms over systemic PD-L1-Fc administration and mitigates the adverse effects of PD-L1-Fc administration. The nanoparticles-formulated PD-L1-Fc affects production of proinflammatory and anti-inflammatory cytokines, attenuates the infiltration of macrophages, neutrophils, and dendritic cells, increases the frequencies of Treg, Th1 and Tfh cells, reshapes the gut microbiota composition; and increases short-chain fatty acid production. In summary, PD-L1-Fc-decorated nanoparticles may provide an effective and safe strategy for the targeted treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Antígeno B7-H1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças
19.
Asian Pac J Cancer Prev ; 25(2): 627-636, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415550

RESUMO

BACKGROUND: The pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC) is thought to be related to immune response against gut microbiota. TLR4, IgA, and EpCAM have a role in intestinal local immune response and their altered expression related to both IBD and CRC. Lipopolysaccharide (LPS) is the main activator of TLR4. The objective of this study is to evaluate the possible role of intestinal microbiota in the pathogenesis of IBD and CRC through expression of TLR4, IgA and EpCAM. METHODS: One hundred five cases were divided into (Group 1/ Control: 10 sections of normal colonic mucosa, Group 2/CRC: 51 cases, Group 3/IBD: 44 cases). Immunohistochemistry for TLR4, IgA, and EpCAM was done. LPS was assessed in all groups. TLR4 gene and protein expression were assessed in colorectal cancer cell line by RT-PCR and immunocytochemistry. RESULTS: There was a significant correlation between TLR4 and tumor grade (P value 0.003 and 0.01 respectively). A significant correlation was found between IgA expression and T stage (P value 0.02) and between EpCAM expression and histologic type (P value 0.02). In comparison of CRC patients to controls; there was a statistically significant different expression of TLR4 positivity, IgA positivity and EpCAM (P value <0.001, 0.004, <0.001 respectively). Patients with CRC were compared to colitis patients and there was a statistically significant different expression of IgA positivity and EpCAM expression (P value <0.001). There was significant higher expression of TLR4 in CRC cell line than the fibroblast by both PCR and immunocytochemistry (P-value: 0.003 and 0.024 respectively). LPS level in CRC patients was significantly higher than the control and IBD groups (P values <0.001 and <0.001 respectively). CONCLUSION: TLR4, IgA, EpCAM expression in both CRC and IBD might be related to the pathogenic role of microbiota and could represent potential prevention modalities and therapeutic targets.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Neoplasias Colorretais/patologia , Receptor 4 Toll-Like/genética , Lipopolissacarídeos , Molécula de Adesão da Célula Epitelial/genética , Doenças Inflamatórias Intestinais/metabolismo , Imunoglobulina A
20.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397074

RESUMO

We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role of TRPC6-mediated Zn2+ influx in the stress resistance of the intestine. The expression profile of TRPC1-C7 mRNAs in the actively inflamed mucosa from inflammatory bowel disease (IBD) patients was analyzed using the GEO database. Systemic TRPC3 knockout (KO) and TRPC6 KO mice were treated with dextran sulfate sodium (DSS) to induce colitis. The Zn2+ concentration and the mRNA expression levels of oxidative/inflammatory markers in colon tissues were quantitatively analyzed, and gut microbiota profiles were compared. TRPC6 mRNA expression level was increased in IBD patients and DSS-treated mouse colon tissues. DSS-treated TRPC6 KO mice, but not TRPC3 KO mice, showed severe weight loss and increased disease activity index compared with DSS-treated WT mice. The mRNA abundances of antioxidant proteins were basically increased in the TRPC6 KO colon, with changes in gut microbiota profiles. Treatment with TRPC6 activator prevented the DSS-induced colitis progression accompanied by increasing Zn2+ concentration. We suggest that TRPC6-mediated Zn2+ influx activity plays a key role in stress resistance against IBD, providing a new strategy for treating colitis.


Assuntos
Doenças Inflamatórias Intestinais , Canal de Cátion TRPC6 , Animais , Humanos , Camundongos , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...